Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms.

نویسندگان

  • Kwoon Y Wong
  • John E Dowling
چکیده

Whole cell patch recording was performed from morphologically identified cone-driven on-off bipolar cells (Cabs) in giant danio retinal slices to study their glutamate receptors and light-evoked responses. Specific agonists were puffed in the presence of cobalt, picrotoxin, and strychnine to identify glutamate receptors on these cells. Most Cabs responded to both the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor agonist kainate and the excitatory amino acid transporter (EAAT) substrate D-aspartate, and both responses were localized to the dendrites. Kainate generated depolarizations whereas D-aspartate had E(rev) close to E(Cl) and generated hyperpolarizations, indicating that the AMPA/kainate receptors are sign-preserving, whereas the EAATs are sign-inverting. In response to white light, some Cabs gave on bipolar cell-like responses whereas others gave off bipolar cell-like ones, but many cells' responses had both on and off bipolar cell components. In response to appropriately colored center-selective stimuli, many Cabs responded to short and long wavelengths with opposite polarities and were thus double color-opponent. The depolarizing components of the responses to white or colored stimuli were suppressed by the EAAT blocker DL-threo-beta-benzyloxyaspartate (TBOA), whereas the hyperpolarizing components were reduced by the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). These results are consistent with the hypothesis that both EAATs and AMPA/kainate receptors are involved in the generation of light-evoked responses in Cabs and that they confer these cells with on and off bipolar cell properties, respectively. Cabs can generate double color-opponent center responses by receiving inputs from certain cones through EAATs and from other cones through AMPA/kainate receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis.

UNLABELLED Electroretinograms (ERGs) were recorded from the giant danio (Danio aequipinnatus) to study glutamatergic input mechanisms onto bipolar cells. Glutamate analogs were applied to determine which receptor types mediate synaptic transmission from rods and cones to on and off bipolar cells. Picrotoxin, strychnine, and tetrodotoxin were used to isolate the effects of the glutamate analogs ...

متن کامل

Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.

In the primate retina the small bistratified, "blue-yellow" color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S)-wavelength sensitive and combined long (L)- and middle (M)-wavelength sensitive cone photoreceptors, respectively. However, the synaptic pathways that create S versus LM cone-opponent receptive field structure remain controversi...

متن کامل

Short-wavelength cone-opponent retinal ganglion cells in mammals.

In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and ...

متن کامل

Circuitry for color coding in the primate retina.

Human color vision starts with the signals from three cone photoreceptor types, maximally sensitive to long (L-cone), middle (M-cone), and short (S-cone) wavelengths. Within the retina these signals combine in an antagonistic way to form red-green and blue-yellow spectral opponent pathways. In the classical model this antagonism is thought to arise from the convergence of cone type-specific exc...

متن کامل

Neural Coding of Green Flash in Retinal Bipolar Pathways

What visual information do the graded potentials among retinal bipolar pathways actually transmit from photoreceptors to ganglion cells? The answer does not exist. Even the graded electric signals have not been understood completely. Here, this paper tries to analyze the encoding mechanisms of graded signals among the parallel bipolar pathways in response to brief green flash. The typical ON, O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 2005